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A special case of the restricted range approximation scheme is the one
sided approximation scheme, introduced by Kammerer [5], which may be
defined as

One-sided approximation scheme. For an /E qa, b], approximate / by
polynomials p EII which always lie above / (p(x) ~ lex) for all x E [a, bn.

The one-sided approximation scheme can be viewed as the imposition of
a relatively simple type of nonlinear side condition upon the usual Chebyshev
approximation process. In this paper we consider imposing an additional
finite number of linear side conditions on the above approximation process
and term the resulting scheme the one-sided approximation with side
conditions (OSAS) scheme:

OSAS scheme. Suppose Xl *, ... , X n * are n bounded linear functionals on
qa, b]. For an/E qa, b], approximate/by polynomials p EII which always
lie above/and also interpolate/at the Xi* (i.e., Xi*P = Xi*f, i = 1,... , n).

As usual, we shall say that we have a Weierstrass theorem holding for the
OSAS scheme in case given 10 > 0 and/E qa, b] arbitrary, it is possible to
find apE II that not only lies above / and interpolates / at the Xl *,... , X n *

but also is within 10 of/(in the Chebyshev norm). Similarly, by a Jackson-type
theorem, we mean a theorem relating the deviation from / of the best poly
nomial p of degree k that lies above f and interpolates / at the Xl *, ... , X n *

to the deviation from / of the best Chebyshev polynomial approximation q
of degree k to f

As is well known, a Weierstrass theorem holds for the usual unconstrained
Chebyshev approximation process. Consequently, a Weierstrass theorem also
holds for the classical one-sided approximation scheme itself. (Given 10 > 0
arbitrary, let p EII be such that II/ - p II < 10/2. Then q = p + 10/2 EII,
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lies above J, and 111 - q II < E.) We likewise have a Jackson-type theorem
for the one-sided approximation scheme, the deviation of the best one-sided
polynomial approximation p to I of degree k being at most twice the
deviation of the best Chebyshev polynomial approximation q toI of degree k.

As is fairly well known, if we impose a finite number of linear side con
ditions on the usual Chebyshev approximation process, we still have a
Weierstrass theorem (the result being Yamabe's theorem [6]) and also a
Jackson-type theorem (the bounded linear functional (BLFT) theorem [3]).
On the other hand, if one imposes both linear and nonlinear side conditions
on the usual Chebyshev approximation process, we need not always have
even a Weierstrass theorem holding. This is perhaps best illustrated by the
SAIN approximation scheme introduced by Deutsch and Morris [1], which
may be defined as

SAIN approximation scheme. Suppose Xl *, ... , X n* are n bounded linear
functionals on C[a, b]. For an IE C[a, b], approximate I by polynomials
p EII whose norm are the same as that of I ([I p II = 11/11) and which also
interpolate I at the Xi*'

Notice that although the OSAS and SAIN approximation schemes are
very similar to each other in their statements, neither is a special case of the
other (the analogy can be extended even farther if it is recalled that for the
related approximation scheme of approximating an IE C[a, b] by poly
nomials p whose norm is that of J, one also has both a Weierstrass and a
Jackson-type theorem holding (e.g., [3]). Thus, SAIN without the linear side
conditions exhibits similar behavior to the one-sided approximation scheme
for Weierstrass and Jackson-type theorems). One the other hand, for the
SAIN approximation scheme, it is well known that whether a Weierstrass
theorem holds depends heavily on the particular linear functionals Xl * ,.." X n*
involved. Thus, one might suspect a similar behavior for the OSAS approxi
mation scheme. That such is indeed the case is pointed out forcibly by
the theorem of [4], where necessary and sufficient conditions on an/E C[a, b]
are given in order that one even have a polynomial p EII existing that lies
above I and interpolates I at a given number of points; in particular, even
for the Xl *, ... , X n * all point evaluations on C[a, b] one does not have a
Weierstrass theorem holding for the OSAS approximation scheme (this
should be constrasted with the SAIN approximation scheme, where 'the
Xl *, ... , X n * point evaluations do suffice for a Weierstrass theorem to hold).

It is well known that a complete determination of what linear functionaIs
Xl *,... , X n * are necessary and sufficient for a Weierstrass theorem to hold
has not as yet been given, partially because the problem seems inherently
difficult. It was this fact (and the fact that the author was looking at the more
general problem of obtaining a Jackson-type theorem for the more general
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restricted range approximation scheme, together with the fact that the author
has previously obtained a Jackson-type theorem for the SAIN approximation
scheme when the Xi* were all point evaluations) that led the author to
consider obtaining necessary and sufficient conditions on the Xl *, ..., Xn*
in order that a Weierstrass theorem hold for the OSAS approximation
scheme. While a priori it was not at all clear that such could be done, it
turns out that the OSAS scheme is so simple that we can even give a Jackson
type theorem as a corollary.

We will require the following known result (e.g., [2, pp. 86-87]):

PROPOSITION A. Let X be a normed linear space, {ci , ••• , cn} arbitrary
scalars, {Xl*,... , Xn*} a finite set in X*, and let M > O. Then, for any E > 0
there exists an X E X such that x,*(x) = Ci , i = 1,... , n, and II X II < M + E

ifand only if
IErxiCi I ~ Mil ErxiXi* II

for every finite collection of scalars {rxi}'

DEFINITION 1. We say that a finite set of bounded linear functionals
Xl *, , Xn* are span indefinite in case no nontrivial linear combination of the
Xl *, , Xn* is a positive linear functional.

Equivalently, if f!IJ denotes the cone of positive linear functionals and
(Xl *, , Xn*) the subspace of the dual spanned by Xl *,... , Xn*, then the
Xl *, , Xn* are span indefinite if and only if

<Xl*,... , Xn*) n f!IJ = {O},

if and only if

(Xl *, ... , Xn*) n (f!IJ U -f!lJ) = {O},

-f!IJ being {-p; p E f!IJ}. Notice that Xl *,... , Xn* being span indefinite implies,
in particular, that they are linearly independent. On the other hand, if the
linear side conditions XI*"'" Xn* imposed in the OSAS scheme are not
linearly independent, they can be replaced by a subset that is linearly inde
pendent, so without loss of generality, suppose below that the Xl *, ... , Xn* are
linearly independent.

LEMMA 1. Suppose that

(i) Xl *,... , Xn* are span indefinite on a function space X,

(ii) Y = {XEX;Xz*X = ... = Xn*X = O}, and

(iii) 1 E Y.

Then ±xI* Iy is not a positive linear functional on Y.
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Proof Suppose not. By the Hahn-Banach theorem, let u* E x* be an
extension of x I * Iy to X such that II u* II = II x I * Iy II. Let W* E x* be such
that x I * = u* + w*. For y E Y, xl*y = u*y, so w*y = °(y E Y), whence,
w* E yJ. = <x2*, ... , Xn *). On the other hand, I u*11 = I Xl * Iy (1)1 =
II Xl * Iy II = II u* II, so u* is (±) a positivelinear function. But u* = Xl * - w* E
<Xl*, ... , Xn *), whence, by the span indefiniteness of Xl *, ... , Xn *, u* cannot
be (±) a positive linear functional. I

LEMMA 2. Suppose that M is a dense subspace of qa, b] that contains
the constants. If x I *,· .. , Xn * are span indefinite on qa, b], then there exists
an m E M such that

(i) m(x)?: 1, (x E [a, b]), and

(ii) xi*m = 0, (i = 1,... , n).

Proof Clearly, it suffices to find an mE M that satisfies condition (ii)
and is strictly positive on [a, b]. By Yamabe's theorem [2, p. 87; 6] it suffices
to find an X E X = qa, b] that is zero at the Xi* (x, *X = 0, i = 1,... , n)
and strictly positive on [a, b].

If xi*1 = °(i = 1,... , n), done, so without loss of generality suppose that
Xl *1 =F 0. By replacing Xl * by Y1 * = (sgn Xl *1) Xl *III Xl * II and XJ * by
Y;* = XJ* - (xj*llxl *1) Xl *, without loss of generality we may suppose that

xl*1 > 0,
while

By Lemma 1, I xl*11 < 1, whence, by Proposition A, (applied to the sub
space Y of Lemma 1 and Xl * Iy) there is agE X such that Xl *g = -Xl*1,
X2 *g = ... = Xn *g = 0, and II g II < 1. But then X = 1 + g > ° on
[a, b] and is zero at each of the x;*, i = 1,... , n. I

THEOREM 1. Suppose x l *, ... , x n * are linearly independent bounded linear
functionals on qa, b]. Then, for any fE qa, b] and E > 0, there is a p Ell
for which

(i) p(x)?: lex), X E [a, b]),

(ii) x,*p = X, *f, (i = I, ..., n), and

(iii) ilf - p II < E,

if and only if the Xl *,... , Xn * are span indefinite on CIa, b].

Proof Suppose first that the Xl *,..., Xn * are span indefinite on CIa, b].
By Lemma 21et m EII be such that x, *(m) = °(i = I, ... , n), while m(x) ?: 1
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on [a, b]. Let /l- = II m II. Given fE C[a, b] and E > 0 arbitrary, let q Ell
be such that x;*q = x,*f (i = 1,... , n) and Ilf - q II < E/(1 + /l-). Set

p = q + Eml(l +/l-).

Then p Ell, x;*p = x;*f (i = 1, ... , n), and Ilf - p II ~ Ilf - q II +
E/l-/(l + /l-) < E.

Conversely, suppose that Xl *, ... , X n * are not span indefinite on era, b]. In
particular, then, there exists constants ~1 , ... , ~n such that x* = ~lX1* + ... +
~nxn* is a positive linear functional of norm one on X = C[a, b]. Using the
Riesz representation theorem, let

x*O = r'd/l-'
a

/l- being a finite nonnegative Baire measure on [a, b]. Let /l- = /l-1 + /l-2 ,
where /l-1 is purely atomic and /l-2 has no atoms. If y;* = f d/l-' , then in order
for a p Ell to be such that x*p = x*f, we must also have y;*p = Yi*f
(i = 1,2). If /l-1 '1'= 0, it consists of at most a countable number of point
evaluations, say at {t;}~l' But apE II will interpolate f at Y1* only if
p(ti) = f(t;) for every t,. Hence, we need merely take an fE C[a, b] that
fails the necessary condition at t1 in the theorem of [4] mentioned above
to get a f that cannot be approximated arbitrarily closely by polynomials
in the OSAS scheme. If /l-1 = 0 but /l-2 oF 0, then the support of /l-2 has positive
Lebesque measure. Pick a point to in [a, b] and consider v = X[a,b]\{to} 0 /l-2'
Let A be a closed subset of the support of /l-2 disjoint from {to} that has
positive Lebesque measure. Since 11 vii = 11/l-211 it is possible to do so such
that /l- = XA °/l-2 = XA 0 v is nonzero on C[a, b]. Define a continuous function
f, 0 ~ f(t) ~ 1, by Urysohn's lemma so thatf(x) = I, X E A, butf(to) = O.
Then for any polynomial p to satisfy the OSAS scheme (and in particular
that Y2 *p = Y2 *1) it is necessary that p(x) = 1 for all x E A. But A has
positive measure, hence, necessarily p(x) == 1. Thus, 11 f - p II ~
If(to) - p(to)j = 1, and again, we fail to have a Weierstrass theorem
holding. I

From the proof, we observe that we have also established the following:

COROLLARY 1. Suppose that Xl *,..., X n*are span indefinite on X = C[a, b].
Let M be a dense subspace of X that contains the constants. Then, given x E X
and E > 0 arbitrary, there exist m E M such that

(i) m ~ x,

(ii) x;*m = x;*x,

(iii) II x - mil < E.
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COROLLARY 2. If Xl *, ... , Xn * are span indefinite on X = C[a, b], and
if Sk(f) denotes the deviation of the best Chebyshev polynomial of degree k
to f, then there exists a constant C depending only on the Xl *,... , Xn * such that,
for any f E C[a, b], there is a polynomial Pk E Ih ofdegree at most k for which

(i) h(X);:? f(x), (x E [a, b])

(ii) Xi*h = x,*f, (i = 1'00" n), and

(iii) Ilf - Pk II < CSk(f).

Also, a similar variant to Corollary 1 clearly can be given. However, the
converse of Corollary 1 is not valid for arbitrary dense subspaces of
X = era, b] that contain the constants. As an example, consider the subspace

M = {m E erO, 2]; m agrees with a polynomial on [0, In. (1)

Since II is dense in C[O, 2] and is a subspace of M, M is a dense subspace of
C[O, 2] that contains the constants. Furthermore, the linear functional

X* = e3f2' (2)

being a point evaluation at a point of [0, 2] near which M is locally all
continuous functions, will be such that a Weierstrass theorem will hold for
the OSAS scheme.

On the other hand, for the converse to Corollary 1 to fail, it is clear that
the type of behavior illustrated by (1) and (2) above must be occurring. In
particular, for M any dense subspace of II that contains the constant func
tions, the converse to Corollary 1 is valid, and we immediately can write
down a Muntz-type theorem analogous to Theorem 1 if we wished to do so.
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